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1. Objective of the talk

Let T be a fixed time horizon, b, σ measurable mappings defined over

appropriate spaces. We are interested in the following nonlinear diffusions

Mean Field (McKean-Vlasov) SDE :

Xt = X0 +

∫ t

0
b(s,Xs, PXs)ds+

∫ t

0
σ(s,Xs, PXs)dBs, t ∈ [0, T ], (1.1)

where P is a probability measure with respect to which B is a B.M., and

X0 obeys a given probability law µ0 ∈ P2(Rd).

Remark: 1. PXs is the law of Xs w.r.t. P .

2. P(Rd): the space of the probability measures over Rd.

3. Pp(Rd):={µ ∈ P(Rd) :

∫
Rd
|x|pµ(dx) < +∞}, p ≥ 1.
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1. Brief state of art — McKean-Vlasov SDEs

The simplest: mean field approximation

Consider a large system of interacting diffusion:

dXN,i
t = σ(XN,i

t ,
1

N

N∑
j=1

δ
XN,j
t

)dW i
t , XN,i

0 = x0, x0 ∈ Rd, 1 ≤ i ≤ N,

where W i, i ≥ 1, are independent B.M., and δx ∈ P(Rd) is the Dirac

measure with mass at x.

N →∞−−−−−→ dXi
t = σ(Xi

t , PXi
t
)dW i

t , X
i
0 = x0, x0 ∈ Rd.

• Mean Field SDEs: Mean Field SDEs have been intensively studied for

a longer time as limit equ. for systems with a large number of particles

(propagation of chaos)(Sznitman (1984, 1991), Kotelenez (1995), Overbeck

(1995), Méléard (1996), Talay & Vaillant (2003),......)
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1. Brief state of art — Mean Field Games

• Mean Field Games: Mean-Field Games and related topics, since 2006-

2007 by J.M. Lasry and P.L. Lions, Huang-Caines-Malhamé (Nash certainty

equivalence principle) (2006);

...............

Mean field game system:
i) −∂tu− v4u +H(x,Du,m) = 0 in (0, T )× Rd Hamilton-Jacobi-Bellman equation

ii) ∂tm− v4m− div(Hp(x,Du,m)m) = 0 in (0, T )× Rd Kolmogorov-Fokker-Planck equation

iii) m(0) = m0, u(x, T ) = G(x,m(T )) in Rd

Master equation:

−∂tU(t, x,m)− v4xU(t, x,m) +H(x,DxU(t, x,m),m)− v
∫
Rd

divyDmU(t, x,m, y)m(dy)

+

∫
Rd
DmU(t, x,m, y) ·DpH(y,DxU(t, y,m),m)m(dy) = 0 in (0, T )× Rd × P2

U(T, x,m) = G(x,m) in Rd × P2
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1. Brief state of the art — Mean Field BSDEs

• Mean Field BSDEs (MFBSDEs):

Yt = ξ +

∫ T

t

f(s, Ys, Zs, P(Ys,Zs))ds−
∫ T

t

ZsdWs, t ∈ [0, T ], (1.2)

where f : Ω× [0, T ]× R× R× P2(R2)→ R is Lipschitz, ξ ∈ L2(FT ).

Existence and uniqueness of the solution: (Y,Z).

References:

• Discussion of the MFBSDE as the limit over a sequence of “nearly classical”

BSDEs: Buckdahn, Djehiche, L., Peng. 2009.

• Discussion of general properties of MFBSDEs; their interpretation as generalized

Feynman-Kac formula for associated nonlocal PDEs: Buckdahn, L., Peng. 2009.

• Classical solution of non-local PDE related with the general mean-field SDE:

Buckdahn, L., Peng, Rainer (2017 (2014, Arxiv))
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1. Brief state of the art — Controlled MFFBSDEs

• For Pontryagin’s maximum principle: L. (2012);

+ with partial observations: Buckdahn, L., Ma (2017);

 Acciaio, Backhoff-Veraguas, Carmona (2019):

Controlled mean-field stochastic system:

dXv
t = b(t, P(Xv

t ,vt)
, Xv

t , vt)dt+ σ(t, P(Xv
t ,vt)

, Xv
t , vt)dWt, t ∈ [0, T ]...

• For Peng’s maximum principle: Buckdahn, Djehiche, L. (2011);

 Buckdahn, L., Ma (2016): Controlled mean-field stochastic system:

dXv
t = b(t, PXv

t
, Xv

t , vt)dt+ σ(t, PXv
t
, Xv

t , vt)dWt, t ∈ [0, T ]...

 Buckdahn, Chen, L. (2021): Controlled mean-field stochastic system:

dXv
t = b(t, P(Xv

t ,vt)
, Xv

t , vt)dt+ σ(t, P(Xv
t ,vt)

, Xv
t , vt)dWt, t ∈ [0, T ]...

+ with partial observations: L., Liang, Mi (2023 (2021, Arxiv))

• For Zero-sum stochastic differential games:

L., Min (2016)

..................
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1. Objective of the talk

Study of Pontryagin’s stochastic maximum principle

for a path-dependent mean-field forward and backward stochastic system.

The novelties in our work:

• The MFFBSDE is fully coupled through the law of the paths of

(X,Y ) in the coefficients of both the forward and the backward equation.

Existence is proved just under the 2-Wasserstein continuity of the

coefficients w.r.t. the law of (X,Y ).

• The coefficients in both the forward as well as the backward SDEs

depend not only on the controlled solution processes (Xt, Yt, Zt) at the

current time t, but also on the law of the paths (X,Y, u) of the solution

process and the control. The cost functional too depends on the law of

the paths of (X,Y, u).

• The Hamiltonian as well as the SMP we obtain are quite novel, far

beyond the classical ones.
8 / 47



1 Objective of the talk

2 Preliminaries

3 Mean-field FBSDE: Existence and uniqueness

4 Derivative with respect to a measure over a Banach space

5 Maximum principle for the controlled mean-field FBSDE

6 A sufficient condition for optimality

9 / 47



2. Preliminaries

• (Ω,F , P ) – complete probability space endowed with a d-dim. B.M. B.

• F0 ⊂ F – a sub-σ-field independent of B and “rich enough”, i.e.,

P2(Rk) = {Pξ, ξ ∈ L2(F0;Rk)}, k ≥ 1.

• T > 0 – fixed time horizon, CkT := C([0, T ];Rk).

• (Ω̃, F̃ , P̃ ) – a copy of the probability space (Ω,F , P ). For any r.v. ϑ

over (Ω, F , P ) we denote by ϑ̃ a copy over (Ω̃, F̃ , P̃ ): P̃
ϑ̃

= Pϑ.

• P(CkT ) – the space of all probability measures on (CkT ,B(CkT ));

• For p ≥ 1, Pp(CkT ) (⊆ P(CkT )) the space of all probabilities with finite

p-th moment; the p-Wasserstein metric on Pp(CkT ): For all µ, ν∈Pp(CkT ),

Wp(µ, ν) :=inf{(
∫
C2kT

|x− y|pCT π(dx, dy))
1
p :π ∈ Pp(C2kT ) with marginals µ and ν}.

For p = 1, we have the Kantorovich-Rubinstein Theorem,

W1(µ, ν) = sup
{
|
∫
CkT
hdµ−

∫
CkT
hdν|, h ∈ Lip1(CkT ), h(0) = 0.

}
.
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3. Mean-field FBSDE: Existence and uniqueness

We consider the following coupled mean-field FBSDE
dXt = σ(t,Xt, P(X,Y ))dBt, t ∈ [0, T ],
dYt = −f(t,Xt, Yt, Zt, P(X,Y ))dt+ ZtdBt, t ∈ [0, T ],

X0 = x ∈ Rd, YT = Φ(XT , P(X,Y )),
(3.1)

where

σ : [0, T ]× R× P2(C2T )→ R, f : [0, T ]× R× R× R× P2(C2T )→ R,
Φ : R× P2(C2T )→ R,

satisfy:

Assumptions

(H1) σ, Φ and f are measurable, and continuous over P1(C2T ), with
continuity modulus ρ : R+ → R+ with ρ(0+) = 0, uniformly w.r.t. the
other variables.

(H2) σ, Φ and f are bounded and have bounded derivatives w.r.t. x and
to (x, y, z), resp.
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3. Mean-field FBSDE: Existence and uniqueness

Theorem 3.1

We assume (H1) and (H2) hold true. Then mean-field FBSDE (3.1) has
an adapted solution (X,Y, Z).

Sketch of Proof. The key for the proof is an application of Schauder’s
fixed point theorem stating that if V is a Hausdorff topological vector
space, K ⊂ V is a nonempty convex closed subset, and T : K → K is a
continuous mapping such that T (K) ⊂ K is contained in a compact
subset of K, then there exists µ ∈ K such that T (µ) = µ.

Let µ ∈ P1(C2T ), and we consider
Xµ
t = x+

∫ t

0
σ(s,Xµ

s , µ)dBs,

Y µ
t =Φ(Xµ

T , µ)+

∫ T

t
f(s,Xµ

s , Y
µ
s , Z

µ
s , µ)ds−

∫ T

t
Zµs dBs, t∈ [0, T ].

(3.2)

Then, under the assumptions (H1) and (H2), (3.2) has a unique solution
(Xµ, Y µ, Zµ) ∈ S2

F × S2
F ×M2

F . Put θµs := (Xµ
s , Y

µ
s , Z

µ
s ), s ∈ [0, T ].
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3. Mean-field FBSDE: Existence and uniqueness

Using the Malliavin derivative we show,

• For p ≥ 1, E[| supt∈[r,T ]Dr[X
µ
t ]|p|Fr] ≤ Cp, t ∈ [0, T ], 0 ≤ r ≤ T,

• |Y µ
t | ≤ C, t ∈ [0, T ], P -a.s., |Zµt | ≤ C, drdP-a.e., for some C ∈ R.

With C = (Ct) as coordinate process on C2T :Ct(φ) = φt, φ ∈ C2T , t∈ [0, T ],

we consider

K :=
{
µ ∈ P1(C2T )

∣∣∣ ∫
C2T

sup
t∈[0,T ]

|Ct|4dµ ≤ C;∫
C2T
|Ct − Cs|4dµ ≤ C|t− s|2, t, s ∈ [0, T ]

}
.

Step 1. K is a convex and compact subset of (P1(C2T ),W1(·, ·)).

Step 2. T defined by T (µ) := P(Xµ,Y µ), µ ∈ P1(C2T ), maps K into K.

Step 3. T : K → K is continuous.

Step 4. Application of Schauder’s fixed point theorem:
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3. Mean-field FBSDE: Existence and uniqueness

T (K) is compact in K, since K is compact and T : K → K is

continuous. Embed K ⊂ P1(C2T ) into the separable linear Hausdorff space

M1(C2T ) :=
{
γ signed measure over (C2T,B(C2T))

∣∣∣ ∫
C2T

∣∣φ∣∣C2T ·|γ|(dφ) < +∞
}
,

with the norm: ‖ γ ‖1:= sup{|
∫
C2T
hdγ| | h ∈ Lip1(C2T ), h(0) = 0}

(Note: ‖ µ− ν ‖1= W1(µ, ν), µ, ν ∈ P1(C2T )).

This allows to apply Schauder’s fixed point theorem: There exists

µ ∈ K(⊂ P1(C2T )) such that µ = T (µ) = P(Xµ,Y µ), where (Xµ, Y µ, Zµ)

is the solution of FBSDE (3.2). �
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3. Mean-field FBSDE: Existence and uniqueness

Remark 3.1.

Theorem 3.1 uses the W1(·, ·)-continuity of the coefficients w.r.t. the

measure, with continuity modulus ρ. However, the assumption of

W1(·, ·)-continuity can be replaced by that of W2(·, ·)-continuity.

Indeed, assuming w.l.o.g that ρ : R+ → R+ is increasing, we have

ρ(W1(µ, µ
′)) ≤ ρ(W2(µ, µ

′)) ≤ ρ′(W1(µ, µ
′)), µ, µ′ ∈ K, (3.3)

for ρ′(r) := ρ((2C
1
4 )

3
4 r

1
4 ), r > 0, with C from the definition of K.
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3. Mean-field FBSDE: Existence and uniqueness

Let us discuss the uniqueness. For this end we consider the following

mean-field FBSDE,
dXt =σ(t,Xt, PX.∧t)dBt, t ∈ [0, T ],

dYt =− f(t,Xt, Yt, Zt, P(X,Y.∨t))dt+ ZtdBt, t ∈ [0, T ],

X0 =x ∈ R, YT = Φ(XT , PX.∧T ),

(3.4)

where X.∧t = (Xs∧t)s∈[0,T ], Y.∨t = (Ys∨t)s∈[0,T ].

It is a special case of MFFBSDE (3.1), and so the existence of a

solution is proved.
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3. Mean-field FBSDE: Existence and uniqueness

Let us replace (H1) by the following assumption:

Assumption

(H3) There is a constant C > 0 s.t., for all t ∈ [0, T ], (x, y, z), (x′, y′, z′)

∈ Rd × Rd × Rd, µ, µ′ ∈ P1(C2T ), ν, ν ′ ∈ P1(CT ),

|σ(t, x, ν)− σ(t, x′, ν ′)|+ |Φ(x, ν)− Φ(x′, ν ′)|≤ C(|x− x′|+W2(ν, ν
′)),

|f(t, x, y, z, µ)− f(t, x′, y′, z′, µ′)| ≤ C(|x− x′|+ |y − y′|+ |z − z′|
+W2(µ, µ

′)).

Theorem 3.2.

Under assumptions (H2) and (H3), equation (3.4) has a unique solution

(X,Y, Z) ∈ S2
F × S2

F ×M2
F .
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Examples:

1) σ(t, x, P(X,Y )) := σ̃(t, x,
∫ T
0 E[h(Xs, Ys)]ds), where h is a

deterministic function;

2) σ(t, x, P(X,Y )) := σ̃(t, x, E[g(Xφ(t), Yψ(t))]), where

φ, ψ : [0, T ]→ [0, T ] are measureable functions.

......

σ defined in 1) and in 2) satisfies (H1) and (H2).
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4. Derivative with respect to a measure over a Banach space

• (H, | · |H) - a real separable Banach space ;

• H′ = {` : H → R |` continuous linear functional } the dual space of H;

• 〈l, x〉H′×H := l(x) the duality product on H′ ×H.

• We are particularly interested in:

+ H = C([0, T ];Rn)× L2([0, T ];Rd),
+ H′ = BV ([0, T ];Rn)× L2([0, T ];Rd);
BV ([0, T ];Rn)-space of all Rn-valued bounded variational càdlàg

functions over [0, T ]. So we have:

〈(h, y), (ϕ, x)〉H′×H =

∫
[0,T ]

ϕ(t)h(dt) + (y, x)L2([0,T ];Rd), (4.1)

where (ϕ, x) ∈ CnT × L2([0, T ];Rd), (h, y) ∈ BV n
T × L2([0, T ];Rd).
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4. Derivative with respect to a measure over a Banach space

Let us come back to a general real separable Banach space (H, | · |H).

Recall that

P2(H) = {m probability over (H, B(H)) :

∫
H
|x|2Hm(dx) <∞}.

The notion of differentiability of a function f : P2(H)→ R (For H = Rd,

see the book by Carmona and Delarue):

Definition 3.2.

We say that u : P2(H)→ R has the linear functional derivative

Dmu : P2(H)×H → R, if Dmu is a continuous function over P2(H)×H
with at most quadratic growth such that, for all m,m′ ∈ P2(H),

u(m′)− u(m) =

∫ 1

0

∫
H
Dmu(tm′ + (1− t)m,x)(m′(dx)−m(dx))dt.

(4.2)
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4. Derivative with respect to a measure over a Banach space

Let us suppose that for u : P2(H)→ R the derivative Dmu : P2(H)

×H → R exists, is continuous and of at most quadratic growth, and that,

for all m ∈ P2(H),Dmu(m, ·) : H → R is differentiable, i.e., there exists

∂x(Dmu)(m, ·) : H → H′ such that, for all x ∈ H, as y ∈ H tends to x

Dmu(m, y)−Dmu(m,x) = 〈∂x(Dmu)(m,x), y − x〉H′×H + o(|y − x|H).

(4.3)

Let us make the following assumptions for Dmu : P2(H)×H → R:

Assumption

(H4) The derivative ∂x(Dmu) : P2(H)×H → H′ exists, is continuous

and of at most linear growth.
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4. Derivative with respect to a measure over a Banach space

However, to simplify our arguments, we suppose also (H4)’:

Assumption

(H4’) (i) ∂x(Dmu) : P2(H)×H → H′ is bounded, and

(ii) There exists a continuity modulus ρu : R+ → R+ continuous and

increasing, with ρu(0) = 0 and ρ2u(·) concave s.t.

|∂x(Dmu)(m′, x′)− ∂x(Dmu)(m,x)|H′ ≤ ρu(W2(m,m
′) + |x− x′|H).

for all (m′, x′), (m,x) ∈ P2(H)×H.
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4. Derivative with respect to a measure over a Banach space

Proposition 4.1.

Under our assumption (H4’) on u and Dmu we have the following first

order Taylor expansion for u : P2(H)→ R at m ∈ P2(H) holds true:

u(m′) = u(m) +

∫
H
Dmu(m,x)(m′(dx)−m(dx)) + o(W2(m,m

′)),

as W2(m,m
′)→ 0 (m′ ∈ P2(H)).

(4.4)

The proof of this proposition is a slight extension of the corresponding

result in Carmona and Delarue (2018). Moreover, also under our above

assumptions the following result concerning (Lion’s) L-derivative of

u : P2(H)→ R extends easily from H = Rn to the general separable

Banach space H.
22 / 47



4. Derivative with respect to a measure over a Banach space

Proposition 4.2.

Given any ξ ∈ L2(Ω,F , P ;H), we have

u(Pξ+η)

= u(Pξ) + E[〈∂x(Dmu)(Pξ, ξ), η〉H′×H] +R(ξ, η), η ∈ L2(Ω,F , P ;H),

(4.5)

where R(ξ, η) = o((E[|η|2H])
1
2 ) as E[|η|2H]→ 0.

Definition 4.2.

We denote the L-derivative by (∂µu(Pξ, x)):

∂µu(m,x) = ∂x(Dmu)(m,x), (m,x) ∈ P2(H)×H. (4.6)

Moveover, when we speak about the differentiability of u : P2(H)→ R,

we mean the L-differentiability.
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4. Derivative with respect to a measure over a Banach space

Here we are interested in the case H = C`T × L2([0, T ];Rk). So, if

σ : P2(C`T × L2([0, T ];Rk))→ R is differentiable,

∂µσ : P2(C`T×L2([0, T ];Rk))×
(
C`T×L2([0, T ];Rk)

)
→ BV `

T×L2([0, T ];Rk),

and (∂µσ)(m,ϕ) = ((∂µσ)i(m,ϕ))1≤i≤`+k.

Moreover, we will write 〈·, ·〉` = 〈·, ·〉H′×H for the duality product.

Definition 4.3.

For l = (l1, · · ·, l`) ∈ BV `
T , v̂ ∈ L2([0, T ];Rk), (f(= (f1, · · ·, f`)), v) ∈

C`T × L2([0, T ];Rk), the duality product 〈·, ·〉` is given by

〈(l, v̂), (f, v)〉` :=
∑̀
i=1

∫ T

0
fi(t)li(dt) +

∫ T

0
v̂svsds.
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5. Maximum principle for the controlled mean-field FBSDE

• UT := L2([0, T ];Rk),

• L∞−F (Ω, L2([0, T ];Rk)) - space of all F-adapted processes s.t.

E[(
∫ T
0 |v(t)|2dt)

p
2 ] < +∞, p ≥ 2.

• U - convex subset of Rk: our control state space;

• The space of admissible controls:

Uad = {v ∈ L∞−(Ω, L2
F([0, T ];Rk))| vt ∈ U, 0 ≤ t ≤ T}.
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5. Maximum principle for the controlled mean-field FBSDE

The dynamics of the controlled stochastic system:
dXv

t = σ(t,Xt, P(Xv
·∧t,v)

)dBt, t ∈ [0, T ],

dY v
t = −f(t,Xv

t , Y
v
t , Z

v
t , P(Xv ,Y vt∨·,v)

)dt+ Zvt dBt, t ∈ [0, T ],

Xv
0 = x ∈ R, Y v

T = Φ(Xv
T , P(Xv ,v)),

(5.1)

where v ∈ Uad and f : [0, T ]× R× R× R× P2(C2T × UT )→ R, σ :

[0, T ]× R× P2(CT × UT )→ R, Φ : R× P2(CT × UT )→ R.

The cost functional:

J(v) = E[

∫ T

0
L(t,Xv

t , Y
v
t , Z

v
t , P(Xv ,Y v ,v))dt+ ϕ(Xv

T , P(Xv ,Y v ,v))],

where L : [0, T ]× R× R× R× P2(C2T × UT )→ R, ϕ : R× P2(C2T×
UT )→ R.
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5. Maximum principle for the controlled mean-field FBSDE

Control problem: A control u ∈ Uad satisfying

J(u) = inf
u∈Uad

J(v)

is said to be optimal.

Objective: Suppose there is an optimal control u,

J(u) = inf
u∈Uad

J(v)

and characterize it with the help of Pontryagin’s SMP.

We have the following standard assumptions:

Assumption

(H5) The functions f, σ, L, Φ, and ϕ are bounded and continuously

differentiable to (x, y, z, µ) and the derivatives are bounded.
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5. Maximum principle for the controlled mean-field FBSDE

Recall that (∂µσ)1(t, x, µ; (φ, v̂)) ∈ BVT . Identifying the elements of

BVT with measures on ([0, T ];B([0, T ])), we suppose:

Assumption

(H6) (i) (∂µσ)1(t, x, µ; (φ, v̂))(dr) := (∂µσ)1(t, x, µ; (φ, v̂))(r)dr,

where the function at the right-hand side (∂µσ)1 : [0, T ]× R× P2(CT×
UT )× (CT ×UT )→ R is Borel measurable, bounded as well as Lipschitz in

(x, µ, φ, v̂), uniformly w.r.t. t, r ∈ [0, T ].

In the same manner we suppose

(∂µΦ)1(t, x, µ; (φ, v̂))(dr) :=(∂µΦ)1(t, x, µ; (φ, v̂))(r)dr,

(∂µf)i(t, x, y, z, µ; (φ1, φ2, v̂))(dr) :=(∂µf)i(t, x, y, z, µ; (φ1, φ2, v̂))(r)dr,

(∂µL)i(t, x, y, z, µ; (φ1, φ2, v̂))(dr) :=(∂µL)i(t, x, y, z, µ; (φ1, φ2, v̂))(r)dr,

(∂µϕ)i(t, x, y, z, µ; (φ1, φ2, v̂))(dr) :=(∂µϕ)i(t, x, y, z, µ; (φ1, φ2, v̂))(r)dr,

where for the functions at the right-hand side we assume:
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5. Maximum principle for the controlled mean-field FBSDE

Assumption (continued)

(H6) (ii) (∂µf)i, (∂µL)i, (∂µϕ)i, i = 1, 2, (∂µΦ)1, are Borel measurable,

bounded, and Lipschitz in the other variables, uniformly w.r.t. the time

parameters.

Under the above assumptions, the existence and the uniqueness of

the solution of (5.1) can be shown by the arguments used for the proof of

the Theorems 3.1 and 3.2.

Proposition 5.1

Suppose (H5) and (H6). Then the controlled MFFBSDE (5.1) has a

unique solution.
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5. Maximum principle for the controlled mean-field FBSDE

Convex variational method.

Let u be an optimal control and (X,Y, Z) := (Xu, Y u, Zu) be the

corresponding optimal solution. Let v be such that u+ v ∈ Uad. Since U

is convex, then also for any 0 ≤ ρ ≤ 1, uρ = u+ ρv is in Uad.

Formal differentiation w.r.t. to ρ at ρ = 0 of (Xρ, Y ρ) := (Xu+ρv, Y u+ρv)

yields the variational equation:

dX1
t ={σx(t,Xt, P(X·∧t,u))X

1
t

+ Ẽ[〈(∂µσ)(t,Xt, P(X·∧t,u); (X̃·∧t, ũ)), (X̃1
·∧t, ṽ)〉1]}dBt,

dY 1
t =− {fx(θt)X

1
t + fy(θt)Y

1
t + fz(θt)Z

1
t

+ Ẽ[〈(∂µf)(θt; (X̃, Ỹ·∨t, ũ)), (X̃1, Ỹ 1
·∨t, ṽ)〉2]}dt+ Z1

t dBt,

X1
0 =0,

Y 1
T =Φx(XT , P(X,u))X

1
T + Ẽ[〈(∂µΦ)(XT , P(X,u); (X̃, ũ)), (X̃1, ṽ)〉1],

(5.2)

where θt := (t,Xt, Yt, Zt, P(X,Y·∨t,u)).
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5. Maximum principle for the controlled mean-field FBSDE

Recall that, e.g.,

〈(∂µf)(θt; (X̃, Ỹ·∨t, ũ)), (X̃1, Ỹ 1
·∨t, ṽ)〉2

=

∫ T

0

(∂µf)(θt; (X̃, Ỹ·∨t, ũ))(r) · (X̃1
r , Ỹ

1
r∨t, ṽr)

T dr.

Lemma 5.1.

Let the assumptions (H5) and (H6) be satisfied. Then the above linear

mean-field FBSDE (5.2) has a unique solution (X1, Y 1, Z1) ∈ S2
F× S2

F×
M2

F .
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5. Maximum principle for the controlled mean-field FBSDE

Recall (Xρ, Y ρ, Zρ) = (Xuρ , Y uρ , Zu
ρ
) for uρ = u+ ρv, and

(X,Y, Z) = (Xu, Y u, Zu). Then:

Lemma 5.2.

Assume (H5) and (H6). Then, for all p ≥ 2, there is Cp ∈ R+ s.t.

E
[

sup
t∈[0,T ]

(∣∣1
ρ

(Xρ
t −Xt)

∣∣+
∣∣1
ρ

(Y ρ
t − Yt)

∣∣)p]
+E
[( ∫ T

0

(1

ρ
|Zρs − Zs|

)2
ds
) p

2
]
≤ CpE

[( ∫ T

0
|vt|2dt

) p
2
]
,

for all ρ ∈ (0, 1), v ∈ Uad,.
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5. Maximum principle for the controlled mean-field FBSDE

Using Lemma 5.2 we prove:

Lemma 5.3.

We assume (H5) and (H6). Then,

1

ρ

(
(Xρ

t , Y
ρ
t , Z

ρ
t )− (Xt, Yt, Zt)

)
)→ (X1

t , Y
1
t , Z

1
t ), ρ↘ 0,

with convegence in S2
F × S2

F ×M2
F .
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5. Maximum principle for the controlled mean-field FBSDE

Let us now study the variational inequality. As u is an optimal

control,

ρ−1[J(u(·) + ρv(·))− J(u(·))] ≥ 0.

Thus thanks to the Lemmas 5.2 and 5.3 we have

Theorem 5.1.

We suppose (H5) and (H6) hold. Then, the following variational inequality

holds true:

0 ≤E
[ ∫ T

0
(Lx(θt)X

1
t + Ly(θt)Y

1
t + Lz(θt)Z

1
t

+ Ẽ[〈(∂µL)(θt; (X̃, Ỹ , ũ)), (X̃1, Ỹ 1, ṽ)〉2])dt
+ ϕx(XT , PX,Y,u)X1

T

+ Ẽ[〈(∂µϕ)(XT , P(X,Y,u); (X̃, Ỹ , ũ)), (X̃1, Ỹ 1, ṽ)〉2]
]
,

(5.3)

where θt = (t,Xt, Yt, Zt, P(X,Y·∨t,v)).
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5. Maximum principle for the controlled mean-field FBSDE

In order to derive the maximum principle, we have to introduce the

adjoint equation. For this, we make use of the following adapted processes:

σx(t) := σx(t,Xt, P(X·∧t,u));

(∂µσ)∗1(t)[k] := E
[
Ẽ
[ ∫ T

t
{(∂µσ)1(r, X̃r, P(X·∧r,u); (X·∧r, u))(t)k̃r

+ (∂µσ)1(t, X̃t, P(X·∧t,u); (X·∧t, u))(r)k̃t}dr
]∣∣∣Ft];

(∂µσ)∗2(t)[k] := E
[
Ẽ
[ ∫ T

0
(∂µσ)2(r, X̃r, P(X·∧r,u); (X·∧r, u))(t)k̃rdr

]∣∣∣Ft];
(5.4)
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5. Maximum principle for the controlled mean-field FBSDE

(∂µf)∗j (t)[p] := E
[
Ẽ
[ ∫ T

0
(∂µf)j(θ̃r; (X,Y·∨r, u))(t)p̃(r)dr

]∣∣∣Ft], j = 1, 3;

(∂µf)∗2(t)[p] := E
[
Ẽ
[ ∫ t

0

{
(∂µf)2(θ̃r; (X,Y·∨r, u))(t)p̃(r)

+ (∂µf)2(θ̃t; (X,Y·∨t, u))(r)p̃(t)
}
dr
]∣∣∣Ft];

(∂µL)∗j (t) := E
[
Ẽ
[ ∫ T

0
(∂µL)j(θ̃r; (X,Y, u))(t)dr

]∣∣∣Ft], j = 1, 2, 3;

(∂µϕ)∗j (t) := E
[
Ẽ
[
(∂µϕ)j(X̃T , P(X,Y,u); (X,Y, u))(t)

]∣∣∣Ft], j = 1, 2, 3;

(∂µΦ)∗j (t)[p(T )] := E
[
Ẽ
[
(∂µΦ)j(X̃T , P(X,u); (X,u))(t)p̃(T )

]∣∣∣Ft], j = 1, 2.

(5.5)
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5. Maximum principle for the controlled mean-field FBSDE

Using the notations introduced above we consider the following

adjoint FBSDE,
dp(t) = {fy(θt)p(t) + (∂µf)∗2(t)[p]−Ly(θt)−(∂µL)∗2(t)−(∂µϕ)∗2(t)}dt

+ {fz(θt)p(t)− Lz(θt)}dBt, t ∈ [0, T ],

p(0) =0,

(5.6)

dq(t) =− {σx(t)k(t) + (∂µσ)∗1(t)[k]−fx(θt)p(t)−(∂µf)∗1(t)[p]

+ Lx(θt) + (∂µL)∗1(t) + (∂µϕ)∗1(t)−(∂µΦ)∗(t)[p(T )]}dt

+ k(t)dBt, t ∈ [0, T ],

q(T ) = ϕx(XT , P(X,Y,u))− Φx(XT , P(X,u))p(T ).

(5.7)
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5. Maximum principle for the controlled mean-field FBSDE

Lemma 5.4.

Under the assumptions (H5) and (H6) the adjoint equation (5.6)-(5.7)

has a unique adapted solution (p, q, k) ∈ S2
F × S2

F ×M2
F .

Proof: Equation (5.6) is an affine mean-field forward stochastic equation

with delay (Recall the definition of (∂µf)∗2(t)[p]), thus the existence and

the uniqueness is obvious. After getting the solution of (5.6), equation

(5.7) is a mean-field BSDE with anticipation like (5.2) (Recall the

definition of (∂µσ)∗1(t)[k]). From Lemma 5.1, we see that there exists a

unique solution (q, k) ∈ S2
F ×M2

F . The proof is complete. �
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5. Maximum principle for the controlled mean-field FBSDE

The following lemma studies the duality relation between variational

equation and adjoint FBSDE:

Lemma 5.5.

Let p be the solution to the adjoint SDE (5.6), (q, k) the solution to the

adjoint BSDE (5.7), and (X1, Y 1, Z1) the solution to (5.2). Then we have

E[X1
T q(T ) + Y 1

T p(T )]

= E
[ ∫ T

0

X1
t

{
(∂µΦ)∗1(t)[p(T )]− Lx(θt)− (∂µL)∗1(t)− (∂µϕ)∗1(t)}dt

]
− E

[ ∫ T

0

Y 1
t

{
Ly(θt) + (∂µL)∗2(t) + (∂µϕ)∗2(t)

}
dt
]
− E

[ ∫ T

0

Z1
t Lz(θt)dt

]
+ E

[ ∫ T

0

vt{(∂µσ)∗2(t)[k]− (∂µf)∗3(t)[p]}dt
]

(5.8)
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5. Maximum principle for the controlled mean-field FBSDE

The Hamiltonian H associated with our control problem:

The classical Hamiltonian H

H(t, x, y, z, p, k, µ, ν) = −f(t, x, y, z, µ)p+ σ(t, x, ν)k + L(t, x, y, z, µ),

(t, x, y, z, p; k, µ, ν)∈ [0, T ]×R4×P2(C2
T )×L2([0, T ]))×P2(CT )×L2([0, T ])),

cannot be that associated with our control problem.

Indeed, our new Hamiltonian has to consider two effects:

• Let u be an optimal control process and define for the associate dynamics

(X,Y, Z) the probability measures ν = P(X,u), µ = P(X,Y,u).

The terminal value YT = Φ(XT , P(X,u)) and also ϕ(XT , P(X,Y,u)) depend

on the law of the whole path (X,u) and (X,Y, u), respectively.

This has as consequence that they produce their own time-dependent

adapted coefficients (∂µΦ)∗j (t)[p(T )] and (∂µϕ)∗i (t), j = 1, 2, i = 1, 2, 3,

which we have to take into account in the definition of the Hamiltonian and

its derivatives.
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5. Maximum principle for the controlled mean-field FBSDE

• It adds that, like (∂µΦ)∗j (t)[p(T )], the derivatives w.r.t. the measure

(∂µσ)∗1(t)[k], (∂µf)∗i (t)[p], i = 1, 2, are linear functionals but now of the

whole solution process (p, (q, k)) of the adjoint forward-backward SDE,

and don’t depend on p and k only in a multiplicative way.

This makes that our Hamiltonian cannot have the classical form. We

define the Hamiltonian just as the following vector function:

H(t, x, y, z, ν, µ)

:= (−f(t, x, y, z, µ), σ(t, x, ν), L(t, x, y, z, µ),−Φ(·, ν), ϕ(·, µ)).
(5.9)
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5. Maximum principle for the controlled mean-field FBSDE

For the derivatives of the Hamiltonian, we introduce the following

notations. For ν = P(X,u), µ = P(X,Y,u), σ(t) = σ(t,Xt, ν),

σx(t) = σx(t,Xt, ν), fx(θt) = fx(t,Xt, Yt, Zt, µ), and Lx(θt) =

Lx(t,Xt, Yt, Zt, µ), we put

(∂xH)(t) = (−fx(θt), σx(t), Lx(θt), 0, 0),

Hx(t) = ((∂xH)(t), (p(t), k(t), 1, 0, 0))R5 ,

where (·, ·)R5 denotes the inner product in R5.

In the same sense we define
(∂yH)(t) = (−fy(θt), 0, Ly(θt), 0, 0),

(∂zH)(t) = (−fz(θt), 0, Lz(θt), 0, 0),
and

Hy(t) = ((∂yH)(t), (p(t), k(t), 1, 0, 0))R5 ,

Hz(t) = ((∂zH)(t), (p(t), k(t), 1, 0, 0))R5 .
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5. Maximum principle for the controlled mean-field FBSDE

Concerning the derivatives with respect to the measure, we write

(∂µH)x(t) =− (∂µf)∗1(t)[p] + (∂µσ)∗1(t)[k] + (∂µL)∗1(t)

− (∂µΦ)∗1(t)[p(T )] + (∂µϕ)∗1(t),

(∂µH)y(t) =− (∂µf)∗2(t)[p] + (∂µL)∗2(t) + (∂µϕ)∗2(t),

(∂µH)v(t) =− (∂µf)∗3(t)[p] + (∂µσ)∗2(t)[k] + (∂µL)∗3(t)

− (∂µΦ)∗2(t)[p(T )] + (∂µϕ)∗3(t).

Putting

DxH(t) :=Hx(t) + (∂µH)x(t),

DyH(t) :=Hy(t) + (∂µH)y(t),

DzH(t) :=Hz(t),

DvH(t) :=(∂µH)v(t).

(5.10)
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5. Maximum principle for the controlled mean-field FBSDE

We can write now the adjoint FBSDE (5.6)-(5.7) in the following way:
dp(t) =−DyH(t)dt−DzH(t)dBt, t ∈ [0, T ],

dq(t) =−DxH(t)dt+ k(t)dBt, t ∈ [0, T ],

p(0) =0, q(T ) = ϕx(XT , P(X,Y,u))− Φx(XT , P(X,u))p(T ).

(5.11)

Then we will get the following stochastic maximum principle:

Theorem 5.2.

Let u be an optimal control of the mean-field FBSDE control problem.

Then, recalling the definition of DvH(t), we have the maximum principle:

DvH(t)(v − u(t)) ≥ 0, for all v ∈ U, dtdP -a.e. (5.12)

where (p, q, k) is the solution of the adjoint equation (5.6) and (5.7).
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6. A sufficient condition for optimality

Last but not least we show that the optimality condition given by

Pontryagin’s SMP (5.12) is not only necessary, but, combined with a

suitable convexity assumption for the Hamiltonian H, it is also sufficient.

Theorem 6.1.

Let us suppose the convexity of the Hamiltonian (−f(t, x, y, z, µ)p(t),

σ(t, x, ν)k(t), L(t, x, y, z, µ), −Φ(x′, ν)p(T ), ϕ(x′, µ)) in (x, x′, y, z, ν, µ)

∈ R4 × P2(CT × UT )× P2(C2T × UT ), where (p, q, k) is the solution of the

adjoint equation (5.6)-(5.7). Furthermore, we continue to suppose the

standard assumptions (H5)-(H6) of the preceding section. Then, if an

admissible control u ∈ Uad satisfies (5.12), it is optimal:

J(w) ≥ J(u), for all w ∈ Uad such that v := w − u ∈ Uad.
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6. A sufficient condition for optimality

Remark 6.1.

The convexity of (x, x′, y, z, µ, ν)→ (−f(t, x, y, z, µ)p(t),−Φ(x′, ν)p(T ))

can be got by supposing, for instance, the convexity of −f(t, ·, ·, ·, ·) and

−Φ, and by taking assumptions on the coefficients of the adjoint forward

SDE (5.6) which guarantee that p(t) ≥ 0, t ∈ [0, T ].
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Thank you very much

for your attention!
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